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ABSTRACT 

A general finite element procedure for obtaining strain- 

energy release rates for crack growth in isotropic materials is 

presented. The procedure is applicable to two-dimensional finite 

element analyses and uses the virtual crack-closure method. The 

procedure was applied to non-singular 4-noded (linear), 8-noded 

(parabolic), and 12-noded (cubic) elements and to quarter-point 

and cubic singularity elements. Simple formulas for strain- 

energy release rates were obtained with this procedure for both 

non-singular and singularity elements. The formulas were 

evaluated by applying them to two mode I and two mixed mode 

problems. Comparisons with results from the literature for these 

problems showed that the formulas give accurate strain-energy 

release rates. 

INTRODUCTION 

Two-dimensional finite element analyses are widely used to 

obtain stress-intensity factors and strain-energy release rates 

for cracked isotropic and orthotropic domains. Several methods 

are available to extract the stress-intensity factor K and 

hence the strain-energy release rate G from finite element 

results [l-5). For isotropic materials, stress-intensity factors 

have been used to predict fatigue crack growth and fracture. 

However, for composites, idealized as orthotropic or anisotropic 

materials, with crac'ks or delaminations, the strain-energy 
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release rate G has been found to be more convenient [6,7] for 

these predictions. 

The strain-energy release rate for a particular crack length 

can be obtained with two finite element analyses using the same 

model but with two crack lengths differing by a small amount. 

This procedure is not preferred since the boundary value problem 

needs to be solved twice. A variety of methods [8-101 which 

utilize only a single finite element analysis are available to 

obtain strain-energy release rates. One such method, based on 

Irwin's virtual crack-closure method, uses the stresses ahead of 

the crack tip and the displacements behind the crack tip. 

Rybicki and Kanninen (81 used this approach to obtain a simple 

formula for the strain-energy release rate for a cracked, 

isotropic domain modeled with four-noded quadrilateral, non- 

singular elements. 

In the recent years, several crack-tip singularity elements 

have been developed [ 2 , 3 , 4 , 1 1 , 1 2 ] .  These elements produce the 

required singularity at the crack tip and give accurate stress 

distributions with fewer degrees of freedom than non-singular 

elements. For the special singularity elements with the near- 

field solution built in explicitly [12], the K and G values 

are obtained a s  a part of the solution. For the more popular 

singularity elements, like the quarter-point (QP) and cubic 

singularity elements, K and G are usually obtained using the 

crack opening displacement (COD) method [ 2 - 5 1 .  This procedure is 

attractive for isotropic materials but has not been applied for 
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cracks along interfaces in bimaterial plates and is difficult en 

apply for cracks in orthotropic or anisotropic plates. 

The formula given by Rybicki and Kanninen [ 8 ]  is attractive 

because the G values can be obtained easily from a single finite 

element analysis. Similar formulas would be very useful for 

higher order and singularity elements. The purpose of this paper 

is to present a uniform procedure for calculating strain-energy 

release rates that will apply to non-singular and singular 

elements of any order. The development of this procedure is 

based on Irwin's virtual crack-closure method. The procedure 

will provide a set of G formulas that depend on the crack opening 

displacements and the nodal forces at and ahead of the crack tip. 

The procedure outlined here will also serve as a basis for the 

development of similar formulas in the analysis of cracked 

orthotropic or anisotropic composite materials. These materials, 

however, are not considered in this paper. 

First, Irwin's virtual crack-closure method is reviewed. 

Next, a general procedure for calculating strain-energy release 

rates that applies to linear and higher order elements is 

presented. The procedure is then extended to quarter-point and 

cubic singularity elements. Formulas for mixed-mode 

configurations are a l s o  obtained. Next, simpler versions of the 

formulas for the singularity elements are presented. The 

modifications required when the crack faces are loaded with a 

uniform pressure distribution are also presented. The G formulas 

are evaluated by comparing the calculated strain-energy release 
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rates with reference solutions from the literature for two mode I 

and two mixed-mode problems. 

SYMBOLS 

E 

El' E2 

Fx , F 
i Yi 

h 

K 

IQ1 

r 

S 

crack length 

constants in assumed ay distribution 

half-width of a center cracked tension 
specimen or width of a singe edge notch 
specimen 

Young's modulus for a homogenous 
isotropic plate 

Young's moduli in the bimaterial 
isotropic plate 

nodal forces at the ith node in the x -  
and y-directions, respectively 

total, mode I ,  and mode I 1  strain-energy 
release rates 

half-height of specimen 

stress-intensity factor 

transformation matrix connecting forces 
F or F and constants A i Yi X i 

distance behind the crack tip on the y-0 
line 

uniform remote stress or uniform crack- 
face pressure loading 

displacements in the x -  and y -  
directions,respectively 

relative displacements u and v of 
node m with respect to the crack tip 
node i: u - u  - u ' v  - v  - v  m m i' m m i 
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A 

displacement interpolstion functirr, of z 
finite element. 

relative crack opening displacement at a 
distance r 'behind the crack tip 

Cartesian coordinates 

Cartesian stresses 

Poisson's ratios for isotropic, 
homogeneous and bimaterial plates 

crack growth increment, equal to the 
length of the element nearest to the 
crack tip in the x-direction 

VIRTUAL CRACK-CLOSURE METHOD 

Figure l(a) shows a crack tip in an infinite isotropic plate 

subjected to remote mode I type loading. The normal stress 

distribution ahead of the crack t i p  and on the y - 0 line is of 
the form 

u -  
Y 7x'+ A 2  + . .  . 

If the crack extends from a to a + A , for infinitisma1 values of 

A , the crack opening displacements behind the new crack tip 

will be approximately the same as those behind the original crack 

tip. Then the work necessary to extend the crack from a to a 

+ A is the same as that necessary to close the crack tip from a 

+ A t o  a. Irwin computed this work as 

v(r) u (A-r) dr 
Y 

w -  
where v(r) is the crack opening displacement at a distance r 



behind the crack tip at a + A . He then obtained the strain- 

energy release rate as 

Rybicki and Kanninen [ 8 ]  used Eq. ( 3 )  in their finite 

I element analysis. They considered models with 4-noded 

v(r)u (A-r) dr Lim w Lim 1 A 
- I  

A+O A A + o  5 I, Y 
G -  ( 3 )  

quadrilateral elements only. The strain-energy release rate 

equations from Ref. 8 )  are 

(4) 

are the nodal forces at node i in the 

1 GI - - 2A 
1 

GII 2A 
- .- 

where Fx and F 
i "i 

x -  and y-directions, respectively, computed from elements I and 

J in Fig. l(b). The terms uk and vk are the displacements at 

node k in the x- and y-directions, respectively. The formulas 

in Eqs. ( 4 )  are very attractive because the G values can be 

computed from a single finite element analysis. These equations 

were shown to give accurate G values. 

Simple formulas, like Eqs. ( 4 ) ,  will be very useful for 

higher order or singularity elements. This paper develops a 

uniform procedure, based on Irwin's virtual crack-closure method, 

that will give simple formulas. for the strain-energy release 

rates for higher order and singularity elements. 
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PROCEDURE FOR CALCULATING STRAIN-ENERGY RELEASE RATES 

In this section, a general procedure for obtaining the 

strain-energy release rates from a single finite element analysis 

is presented. First, this procedure is outlined for 4-noded 

quadrilateral elements. The procedure is then extended to 8 -  

noded parabolic and 12-noded cubic elements. This procedure is 

also used to obtain G formulas for quarter-point (QP) and cubic 

singularity elements. 

In this procedure, the following assumptions are made: 

1. The finite element idealization in the immediate 

vicinity of the crack tip is symmetric about the x - 0 
line and symmetric about the crack plane (y - 0). 

2. The normal and shear stresses on the y - 0 line and 
ahead of the crack tip are assumed to have the 

classical square-root stress distribution as in 

Eq. (1). In the limit, as the element size in the 

analysis domain becomes smaller, the classical square- 

root distribution will develop near the crack tip. This 

is true regardless of the type of element used to model 

the problem. Therefore, the form of Eq. (1) is assumed 

a priori instead of using the stress distribution given 

by the particular finite element model. 

3. The functional form of the crack opening profiles, u(r) 

and v(r), on the y - 0 line is determined by the element 
shape functions. 
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The normal stress u y  distribution of Eq. (1) can be 

determined from the nodal forces at and ahead of the crack t i p '  

(on the y - 0 line). While nodal forces are available at several 

nodes on the y - 0 line, in this procedure only the nodal forces 
from elements nearest to and around the crack tip will be used to 

determine the uy distribution. Then the normal stress a,, and the 

crack opening displacements v(r) are used in Irwin's virtual 

crack-closure method to obtain the G formulas for various higher 

order non-singular and singularity elements. 

Non-Singular Elements 

4-Noded Quadrilateral Elements 

Consider a finite element idealization with linear 

quadrilateral elements symmetric about the crack tip as shown in 

Fig. 2. Ahead of the crack tip (at node i) and along the y .= 0 

line, the stress by is assumed to have the form 

u = -  + A2 for x 2 0 (5a) Y J x  

= o  for x < 0 (5b) 

Yi 
where A1 and A2 are unknown constants. The nodal forces F , 

F . F y ' F  shown in Fig. 2(b) can be thought of as 

consistent nodal forces acting at nodes i, j ,  1 ,  m due to a 

prescribed stress distribution of the form in Eq. ( 5 ) .  

Conversely, using these nodal forces, one could calculate the 

yJ 1 "m 
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constants in the assumed stress distribution of Eq. (5) ahead of 

the crack tip along the x-axis. 

The stress distribution in Eq. (Sa) is valid only in the 

immediate vicinity of the crack tip since it is obtained from the 

near field solution at the crack tip. Also, slnce there are two 

unknown constants in the assumed distribution of Eq. (Sa), two 

forces are sufficient to determine the constants. The two forces 

F and F , computed from elements I and J nearest to and 
Y I  YI 

A J 

around the crack tip, can be used. These elements are shown by 

solid lines in Fig 2(b). 

The work done by the assumed stress distribution on the 

boundary displacements of elements I and J is equated to the 

work performed by the forces F and F on the 
yi yj 

displacements vi and Vj as 

v + F  v ]  1 ji uy(x) v(x) dx - - 5 
lFyi i Yj j .. 

where v(x) is the displacement interpolation function of the 4 -  

noded element and A is the element length. 

stress causes forces in the negative y-direction, a negative sign 

appears in Eq. (6). For this linear quadrilateral element, the 

v(x) on the i) side is 

Since a tensile uy 

( 7 )  
X 

v(x) - [ 1  - 11 vi  + (A) vj 

Substituting Eq. (7) into Eq. (6) and equating the multipliers of 

vi and vj yields 
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Eq. ( 8 )  may be written as 

( F I  - [ Q I  ( A I  

where 

and 

3 3 1  

Substitution of the calculated values of A 1  and A 2  from Eq. 

( 9 )  in Eq. (5) expresses the stress distribution ay ahead of 

the crack tip completely in terms of nodal forces F and F . 
Yi 'j 

Now consider the displacements behind the crack tip. The 

relative crack opening displacement VR at any distance r from 

the crack tip can be determined by the nodal displacements of 

nodes i ,  k and k f  and the element shape functions as 

Now that the stress distribution ahead of the crack tip and 

the relative displacements behind the crack tip are known, 

10 



Irwin's approach can be used to calculate the strain-energy 

release rates as 

Lim 1 GI A+O 1; u y ( A  - r) vR(r) dr 

Lim 1 A A1 r r 
I A-0 Jo A 2 1  [ (l - ilvi + (vk - vk,)ldr 

Integrating E q .  (llb) and using E q .  (9) gives (Ilb) 

Because the relative displacement at the crack tip vi is zero, 

E q .  (12) reduces to 

A similar procedure can be followed to show that 

The limits in Eqs. (13) and (14) suggest that the crack tip 

element needs to be small, and as smaller elements are used at 

the crack tip, the correct limits for GI and GII are 

approached. Numerical experimentation is required to determine 

the necesary mesh refinement and the limits in E q s .  (13) and (14) 

can be then dropped in actual computations. 
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Eqs. (13) and (14) are identical to those presented by 

Rybicki and Kanninen [8] and are widely used in the literature 

[13-151. Equations (13) and (14) are also applicable if 

triangular elements (Fig. 2(c)), obtained by collapsing the 

quadrilateral elements, are used at the crack tip. Note that for 

this idealization, the forces F and F are the forces at 
Yi 'j 

nodes i and j computed from elements I ,  J ,  K and L 

surrounding the crack tip. 

8-Noded Parabolic Element 

To obtain the G expressions for the 8-noded element, the 

procedure outlined above is followed. For this element, because 

forces are available at three nodes, i ,  j, and k (see Fig. 

3(a)), the uy distribution along the y - 0 line is assumed to be 
A. 

u Y -*+A2 + A3fi 

The parabolic shape functions for this element are 

2 3x + -+ 2x v + ( 4  X - - 4-71 X v 2 
v(x) - (1 - - 

A A i A A j 

2 
X X + ( -  - + 2-+ v 
A A k 

As before, the forces at the nodes i ,  j, and k can be 

related to the constants Ai, A2, and A 3  of the assumed u y  
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distribution (Eq. (15)) as 

where 

(F) - ( F  F F ) A  
y i  yj yk 

( A )  - (Alfi A2A A3A3'2)T. 

I 

and 

168 35 

1 
i i b  [QI - - 

The strain-energy release rates are obtained by performing the 

integrations as in Eq. (lla) and using Eq. (17) as 

GI1 
I 

1 
2 A  

- -  u )  m '  
+ Fx 

Note that the forces at node k do not appear in these equations 

because the relative displacement at node i is zero. 

These equations are similar to those for the 4-noded 

element. Eqs. (18) are also applicable if triangular parabolic 

elements (Fig. 3 ( b ) ) ,  obtained by collapsing the parabolic 

elements, are used at the crack tip. Equations (18) were used in 

references 6, 7 and 16 to obtain G values for delaminated 
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composite laminates. Recently, Krishnamurthy et. a1 [17], using 

a procedure similar to the one described in this paper, 

formulas identical to Eqs. (18) for this element. 

derived G 

12-Noded Cubic Element 

For this element, because four forces are available at nodes 

i, j, k, and 1 (see Fig. 3(c)), the uy distribution along 

the y - 0 line is assumed to be 
- 7 Y + A 2  A1 + A 3 5  + A4x 

Y 

The cubic shape functions for this element are 

As before, the forces at the nodes i ,  j, k ,  and 1 can be 

related to the constants AI, A2, A3, A4 in the assumed 

in Eq. (19) as 

OY 

(A) - ( A 1 f i  A2A A3A3I2 A4A 2 ) 
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and 

1 [ Q l  - - - 840 

544 105 32 14 

720 315 144 63 

288 315 288 252 

128 105 96 91 

The strain-energy release rates are obtained by performing 

the integrations as in Eq. (lla) and using Eq. (21) as 

[F (vp-vp,) + F ( v ~ - v  ) + F (V - V  ) ]  1 
2A GI 9 - -  

n' Yk m' Yi 'j 

and (22) 
1 

I - -  [Fx (u - u  ) + Fx (un-un,) + Fx (Um-um') I 
j k G I I  2A i P P' 

Note that the forces at node 1 do not appear in these equations 

because the relative displacement at node i is zero. 

The strain-energy release rate formulas for this element are 

very similar to those of the linear and parabolic elements. The 

formulas given in Eq. (22) are also valid if triangular elements 

(Fig. 3 ( d ) ) ,  obtained by collapsing one side of the cubic 

elements, are used at the crack tip. 

Singularity Elements 

Quarter-Point Singularity Element 

Henshell and Shaw ( 3 1  and Barsoum [4] showed that square 

root singularities are produced at the crack tip if the midside 

nodes of an 8-noded element (Fig. 3(a)) are moved to the quarter- 

point positions as shown in Fig. 4(a). The quarter-point nodes 
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on the y - 0 line in this figure are nodes j and 1. 

For this element, the uy distribution ahead of the crack 

tip on the y - 0 line is assumed to be like that given in Eq. 

(15). The s h a p e  functions of this element involve square root 

terms [ 4 ]  and are 

X + ( 4  - 4 X - ) v  
A j  

v(x) - (1 - 3 4 + 2 )Vi 

Using this shape function, the forces at the nodes i ,  j, and 

k can be related to the constants AI, A 2 ,  and A 3  of the 

assumed u y  distribution of Eq. (15) as 

where ( F )  and ( A )  are defined in Eq. (17), and 
- r 0 -1 

12 20 1 
-33 1 40 

10 10 9 - 

For non-singular elements the inversion of the matrix [ Q ]  

was not necessary to determine ( A ) .  However, for the singular 

elements this was not the case. The constants A i ,  A 2 ,  and A 3  

are related to the nodal forces through 



where 

where 

r -  1 

[QI-l - - 1-1: 30 -.“J 18 - 3  

-30 60 

The strain-energy release rates were obtained by performing 

the integrations as in Eq. (lla) and using Eq. (25). 

1 
2A GI - - -  [FY (tll(vrn-vm,) + t12(v1-v 1’ ) )  

i 

33s 33% t 1 2  = - 5 2  +- t - 14 - 8 ; 11 2 

7 2 1 n  21% 
= 17 - -  

21% 21% 

+- t21 - 2  16 ; t22 4 

t31 8 ’ t32 2 = - 32 +- I e - - .  

A similar equation was obtained for GII, where Fy is replaced 

with F, and v is replaced with u. 

I n  contrast to the regular parabolic elements, the strain- 

energy release rate equations for quarter-point (QP) elements 

have cross terms involving the corner and quarter-point forces 

and the relative displacements at the corner and quarter-point 

nodes. A s  before, the formulas given in Eq. (26) are also valid 

if triangular quarter-point elements (Fig. 4(b)), obtained by 

collapsing one side of the QP elements, are used at the crack 
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tip. 

Cubic Singularity Element 

Pu et al. [ll] showed that a 12-noded cubic element has a 

square root singularity if the two side nodes are moved from the 

1/3 and 2/3 positions to the 1/9 and 4 / 9  positions, respectively 

(see Fig. 4 ( c ) ) .  This is analogous to moving the midside nodes 

to the quarter points for a parabolic element. For this cubic 

singularity element, the same procedure as above was applied to 

obtain the strain-energy release rate equations. 

For this element, the ay distribution ahead of the crack 

tip on the y - 0 line is assumed to be as given in Eq. (19). 

The shape functions of this element, as is the case for the 

quarter-point element, involve square root terms [ll] and are 

11 x 9 x  3 / 2  

3/2 

With these shape functions, the forces at the nodes i ,  j ,  k ,  

and 1 can be related to the constants AI, A2, A3, and Ab 

of the assumed uy distribution in Eq. (19) as 

( F )  - [ Q I  (A) ( 2 8 )  

where ( F )  and {A) were defined in Eq. (21), and the new 
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transformation matrix [QI is 

105 14 7 

1 63 0 

252 189 
[QI - - [ 315 

315 

105 91 8 4  

144 

78 

The constants ( A )  can be related to nodal forces as 

where 

216 - 34 16 

-1620 570 - 300 
-2430 

1890 

3240 -1290 1020 

- 1890 770 - 770 

- 1  1 
[QI -7 

The strain-energy release rate equations were again obtained 

by performing the integrations as in Eq. (Il(a)) and using Eq. 

( L Y )  as . - A .  

where 
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A 
7155 

I -  1 1 1 8 7  + - 5 1  2 

5 2  
24543  A 38556 - 
33777 A 

I -  53055 + t 1 3  

t21 3 8 

t 2 2  8 

t 

1 1 3 9 6  9575  
I - - A  

A 
33003 - - 12936  + - 
45837 A 

8 
- 1 7 9 8 8  - 23  

" 8 4 5 3  3595 
P - -  + -  t 3 1  3 4 

1 2 4 1 1  
4 "  - 9804 - t 3 2  

A 
1 7 2 8 9  - 13587  + t 3 3  

z 
1 7 6 8 5  

8 

60993 
8 

84807 

I 6948  - t 4 1  

t42  " = - 23976 + 

7r 33372 - t 4 3  

A s i m i l a r  e q u a t i o n  was  o b t a i n e d  f o r  G I I  w h e r e  Fy is 

r e p l a c e d  w i t h  Fx a n d  v i s  r e p l a c e d  w i t h  u .  A s  b e f o r e  t h e s e  

f o r m u l a s  a r e  a p p l i c a b l e  t o  t r i a n g u l a r  c u b i c  e l e m e n t s  ( F i g .  4 ( d ) )  

o b t a i n e d  b y  c o l l a p s i n g  o n e  s i d e  o f  t h e  c u b i c  s i n g u l a r i t y  

e l e m e n t s .  

Mixed  Mode F o r m u l a t i o n  

The  G f o r m u l a s  p r e s e n t e d  e a r l i e r  a p p l y  f o r  p u r e  mode I a n d  

f o r  p u r e  mode I1 problems. I n  mode I ( o r  mode 1 1 )  p r o b l e m s  w i t h  
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parabolic elements, the force F (or Fx ) ,  at node k from 
yk k 

element J (see Figs. 3a and 4a) is exactly equal in magnitude 

but of the opposite (or same) sign to the force computed from the 

element J', the symmetric element about the x-axis. In mixed 

mode problems, the deformation is neither symmetric or 

antisymmetric about the x-axis (or the crack line). Therefore, 

even if the finite element model is symmetric about the crack 

line, as shown in Fig. 5, the forces F and F will not 
'k 'k 

be equal in magnitude and opposite in sign to each other. (See 

the appendix for details.) Because the force F for the 

regular parabolic element and F for the regular cubic element 

(see Fig. 3) do not contribute to G ,  the formulas given for 

these elements in E q s .  (18) and (22) are also valid for mixed 

mode conditions. 

yk 

Y 1  

However, the C formulas for the singularity element ( E q s .  

(26) and (30)) need to be modified for mixed mode conditions. 

The modification is necessary because, for quarter-point 

singularity elements, the nodal forces at node k have products 

involving the displacements at nodes 1 and m (see Fig. 4(a) 

and Eq. (26)). Similarly, for the cubic singularity elements, 

the nodal forces at node 1 have products involving 

displacements at nodes m ,  n, and p (see E q .  (30) and Fig. 

4(c)). The required modifications are explained below. 

I n  mixed mode conditions, the upper and lower crack faces do 

not deform symmetrically or antisymmetrically with respect to the 

crack tip. To close each o f  the crack faces from a+A to a ,  
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different amounts of work are needed. The amount of work needed 

to close each crack surface can be found by computing the 

relative displacements of nodes on the crack surfaces relative to 

the crack tip and using the procedure outlined earlier. 

The G formula for the quarter point element, then, is 

1 
2P G I =  - -  (V1-V1) 1 

where til, t12, . . . t32 are defined in E q .  (26b). v and v m m' 

are the relative displacements of nodes m and m', respectively, 

with reference to the crack tip node i: v - v - v and 

V v 8 -  V The forces FT and FB are the forces 

m m i 

'k yk m' m i '  

computed from the elements J and J ' ,  respectively (see Fig. 

5) * 

A similar equation was obtained for G I I  where Fy is 

replaced with F, and v is replaced with u. For pure mode I 

(or mode 11) conditions, FB = - FT and Fx B = F T 
k X 'k Yk k 

B Fx - - FT 1 ,  and E q .  (31) reduces to 
k X 

and B (or F - F 
yk 'k k 

E q .  (26). 

For mixed mode conditions, the G formula for the cubic 

singularity element is 
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(v -v + t (v -v ) + t23(vm-vm')) 

(t31(Vp-Vp') + t 32 (v -v n#) + t33(vm-vm')) 

+ (t21 p p' 22 n n' 

+ F  
'j 

yk 

where til, t12, . . . ,  t43 are defined in Eq. (30b). The 

forces FT and FB are the forces in the y-direction computed 
Y1 Y1 

from elements J and J', respectively (see Fig. 5 ) .  

A similar equation for GII is obtained where FY is 

replaced with F, and v is replaced with u. For pure mode I 

or mode I1 cases, Eq. (32) reduces to Eq. (30). 

SIMPLIFIED G FORMULAS FOR SINGULARITY ELEMENTS 

The G formulas for t h p  n s n - s i n g ~ l a r  e l e ~ c n t s ,  Eqs. ( i 3 j ,  

(14), (18), and (221, are simple. In contrast, the formulas for 

the singularity elements are awkward, even for pure mode I or 

pure mode I 1  conditions. The formulas are even more complicated 

for mixed mode conditions. The complexity of these formulas can 

be traced to the terms involving the forces at node k for the 

QP elements ( E q s .  (26) and (31)), and at node 1 for the cubic 

singularity elements (Eqs. (30) and (32)). The G formulas can be 

simplified considerably if these forces can be approximated. 

For the QP element, three constants AI, A2, and A3 were 
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assumed in the uy distribution (Eq. (15)) because the three 

forces at nodes i ,  j, and k (Fig.4) were used. However, if 

only two constants A1 and A2 are retained in the oy 

distribution, only the forces at nodes i and j are needed to 

evaluate these constants. This assumption requires the forces at 

node k to be dependent on the forces at nodes i and j, and 

will simplify the formulas considerably. Setting the constant 

A 3  to zero in Eq. (25) yields 

1 
+ 2 Fyj F - -  

'k Yi 
( 33' )  

Substitution of this value of F into Eq. (26) or (31) gives 
'k 

where 

A similar equation was obtained for GII where Fy is replaced 

with Fx and v is replaced with u. Note that this equation 

is valid for pure mode I, mode 11, and mixed mode conditions. 

This equation is considerably simpler and easier to use than 

either Eq. (26) or Eq. (31). 

A similar procedure can be followed for the cubic 

singularity elements. In this case, only three constants are 

used in the expression for u y .  Setting constant A4 to zero in 
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Eq. (29) yields 

F 11, 11 F - F - -  F + -  
Y1 yi 27 'j 27 Yk 

(35) 

Substitution o f  this expression for F into Eqs. (30) and (32) 
Y1 

gives 

where 

157 405 A = - - + +  
5 1  2 16 

1377 
t 270 - - 12 16 

729 1863 t = - - + -  
13 2 16 'IC 

484 395 
- - ' I C  t21 .L 27 32 

176 151 
+-'IC I - -  

t22 3 8 

A 
244 209 
3 8 t23 = - - - 

13 5 

2 7 r  

I - - -  
t31 54 144 'IC 

t -  5 +16 32 

1 1  
t33 - G+Xlr 

A similar equation was obtained f o r  GII where Fy is replaced 

with Fx and v is replaced with u. Again, this equation is 

valid for pure mode I ,  mode 11, 

considerably simpler and easier to use than either Eq. 

and mixed mode conditions, and is 

(30) or 
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Eq. (32). 

Eqs. ( 2 6 ) ,  (30), (31). and (32) will be referred to as the 

MODIFICATION FOR PRESSURE LOADED CRACK FACES 

The procedure developed earlier is valid for calculating 

strain-energy release rates for self-similar crack growth when 

the crack faces are stress free. When the crack faces are 

pressure loaded, the procedure outlined above must be modified. 

To illustrate this modification, consider a central crack of 

length 2a in an infinite plate. 

Figure 6 shows the region very near the crack tip with a 

uniform pressure loading of magnitude S applied to crack faces. 

A s  before, the strain-energy release rate is related to the work 

required to close the crack from a + A to a. The closure of 

the crack faces from a + A to a can be divided into two 

parts. In the first part, the applied pressure between a + A 

and a is erased and, in the second part, the stress free crack 

faces between a + A and a are closed. In the finite element 

analysis, the first part is equivalent to addition of nodal 

forces consistent to the opposite of the applied pressure at all 

nodes between a + A and a. For the second part, the general 

26 

consistent formulas. Eqs. ( 3 4 )  and (36) will be referred to as 

the simpler formulas. The accuracy of the consistent and simpler 

formulas will be studied later in this paper by applying the 

formulas to two mode I and two mixed mode problems for which 

reference solutions are available. 

__ 
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procedure described earlier is used. 

For a regular 8-noded element, the i ~ n i f n r m  pressere 

acting between a + A and a translates into three consistent 

2s nodal forces of values :A, TA, and :A acting at nodes i, 

j, and k respectively (see Fig. 6). To erase this pressure, 

the opposites of these forces are applied to nodes i, 3 ,  and k 

as shown in Fig. 6 ( b ) ,  and added to the finite element computed 

forces FC , FC and FC at nodes i ,  j ,  and k, 
Yi Yj yk 

respectively, (see Fig. 6(b)). Thus, the forces at nodes i, j, 

and k, to be used in Eq. (18). will be 

F - FC - :A 
Yi Yi 

2 s  
3 F - FC - -A 

'j 'j 

(37) 

F = FC - 811 
'k yk 

Eqs. (37) show that the correct forces to b e  used in the G 

calculations for a crack face loading are sum of the computed 

finite element forces and the negative of the consistent nodal 

forces for the pressure distribution. The consistent nodal 

forces f o r  an uniform pressure distribution of magnitude S for 

the various elements considered in this paper are shown in Fig. 

7. These forces are then added to the forces computed at the 

nodes. The corrected forces, F , F , etc., are then used in 
Y i  Yj 
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the appropriate G equations presented earlier to calculate the 

strain-energy release rates. 

EVALUATION OF G FORMULAS 

The formulas presented in this paper are used to calculate 

strain-energy release rates for cracks in two mode I and two 

mixed mode problems. The results are compared to those from the 

literature. The percent error is defined here as 

Present result - Reference result 
Percent error = * 100 

Reference result 

Unless otherwise specified, a Poisson's ratio of 0 . 3  was used for 

all configurations analyzed. 

In all the problems studied, the finite element idealization 

at the crack tip had triangular elements with straight sides. 

These elements were obtained by collapsing one side of the 

parabolic or cubic elements. These triangular elements are 

preferred over their rectangular or curved counterparts as 

suggested in Refs. 4, 11, 18, and 19. 

Mode I Problems 

Remote Loading 

Center-cracked tension specimen. - The first example is a 

center cracked tension (CCT) specimen with a crack-length-to- 

width ratio of 0.8 (see Fig. 8(a)>. From the symmetries in the 

problem, only one-quarter of the specimen was analyzed. Fig. 
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8(c) shows the finite element idealization for the 8-noded 

parahclic elements and t h e  12-noded c u b i c  elements. ine specimen 

was analyzed four ways: (1) regular parabolic elements 

everywhere, ( 2 )  regular parabolic elements with QP elements at 

the crack-tip, ( 3 )  cubic elements everywhere, and (4) cubic 

elements with cubic singularity elements at the crack tip. For 

each case, the strain-energy release rates were obtained using 

the formulas presented earlier. Table 1 presents the normalized 

forces and crack opening displacements ( C O D ) ,  and the strain- 

energy release rates. The four G values are within about 3 

percent of an accurate value from Ref. 20. The models with the 

singularity elements, as expected, yielded the most accurate 

results. For these cases, both of the simpler formulas yielded G 

values which are more accurate than their consistent 

counterparts. 

Single edne notched specimen. - The second example was a 

single edge notched specimen with a/b - 0.8 (Fig. 8(b)). Again 

the finite element idealization of Fig. 8(c) was used. Table 2 

presents the normalized forces, COD, and the strain-energy 

release rates obtained for all 4 idealizations. The strain- 

energy release rates obtained were generally about 6% lower than 

an accurate solution given in Ref. 2 0 .  Again the models using 

the singularity elements yielded more accurate G values than the 

models using the non-singular elements. As in the CCT case, the 

simpler formulas yielded G values which are more accurate than 

their consistent counterparts. 
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Crack Face Loading 

A s  pointed earlier, the forces used in the G formulas must 

be modified for loaded crack faces (see E q .  (37)). To verify 

this modification, a center cracked plate with crack-face 

pressure loading was analyzed. Table 3 presents the forces on 

the nodes at and ahead of the crack tip obtained from the finite 

element analysis for the QP and cubic singularity elements. 

This table also presents the forces used in the G calculations. 

Because the stress-intensity factors and strain-energy release 

rates are identical for crack-face loading and remote loading, 

the COD should be identical for these two loadings. Therefore, 

the modified forces in column 4 of Table 3 should be identical to 

those obtained with the remote loading. A comparison of column 4 

of Table 3 and column 2 of Table 1 shows that this is true. This 

verifies the modification outlined earlier for the crack face 

pressure loading. 

Mixed Mode Problems 

To evaluate the accuracy of the formulas for mixed mode 

problems, an angle crack problem and a cracked interface problem 

were analyzed. The calculated strain-energy release rates are 

compared to those from the literature. 

Angle Crack 

Fig. 9(a) shows the configuration used for the angle crack 

in a finite plate. Fig. 10(a) and (b) present the finite element 
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idealizations with 8-noded parabolic elements and 12-noded cubic 

elements, respectively- F i g .  l O ( c )  O ~ C ? W E   he d e t a f l s  at L L -  L L1 e 

crack tip. With the parabolic elements, quarter point 

singularity elements with A = 0.04a were used at the crack tip. 

In the cubic element model, cubic singularity elements with A - 
0.045a were used at the crack tip. 

P 

Fig. 11 shows the forces at the crack tip. The forces at 

nodes i, j, and k and the displacements at nodes m and 1 

are needed to compute G. These forces and displacements, 

represented as components that are normal and tangential to the 

crack plane, can be computed a s  follows. First, the Cartesian 

forces F, and Fy at nodes i, j, and k are obtained. At 

node i (Fig. lo), the forces Fx and F can be computed 
i Yi 

from elements I ,  J ,  K ,  and L. The forces F , F , and 
Xk 

F can be computed from element L alone. The tangential and 
yk 

and Fn 9 can be computed 
i i Ft normal forces at the crack tip, 

as 

- F c o s 8  + F sin6 
Yi X i i Ft 

= - Fx sin8 + F cos6 
i i Yi Fn 

( 3 8 )  

with similar equations for the forces at nodes j and k. 

Similarly, the normal and tangential displacements at nodes m ,  

m y ,  i, and i i  relative to the crack tip can be computed by 
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first calculating the Cartesian relative displacements as 

i u = u  - u  m m 

V * v  - v  m rn i 
( 3 9 )  

A similar set of equations were used for nodes m', 1, and 1'. 

The normal and tangential forces and displacements are then used 

to obtain the G I  and GII values. 

Table 4 presents the G I  and G I I  values obtained with 

quarter-point and cubic singularity elements. For comparison, 

this table also contains the results from Wilson's collocation 

procedure [21] and Tan et al.'s boundary force method [ 2 2 ] .  

In view of the slight (2 percent) difference between the 

collocation and boundary force method results, the present 

results are compared with the average of these reference results. 

The present results are in good agreement with the reference 

results. The accuracy is better for mode I than for mode 11. 

Again the differences between the simpler and consistent formulas 

are negligible. 

Cracked Bimaterial Plate 

The second mixed mode problem analyzed was a bimaterial 

plate with a central crack along the interface (Fig. 9 ( b ) ) .  

Erdogan and Gupta [ 2 3 )  analyzed this problem for an infinite 

plate with uniform pressure applied to the crack faces. Their 

calculated G values will be used to evaluate the present 
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results. 

Because of symmetry, only one-half of the plate was 

idealized, as shown in Fig. 12(a). Fig. 12 shows the finite 

element model using 8-noded parabolic and QP singularity 

elements. Table 5 presents the strain-energy release rates 

obtained using Eqs. (31) and (34) for three sets of material 

combinations. The strain-energy release rates given in Ref. 23 

were divided by a factor 2 because Erdogan and Gupta’s definition 

of G was different from the classical definition (see Eq. (37) 

on p .  1097 of Ref. 23). Excellent agreement is obtained between 

the finite element computations and those of reference 23. 

In this bimaterial case the power of the stress singularity 

at the crack tip is of the form -1/2+_ia, where a: depends on the 

relative properties of the two materials. This indicates that 

the stresses oscillate near the crack tip. The solution in Ref. 

23 includes the oscillatory part of the stresses. In the present 

finite element analysis, however, this oscillatory behavior is 

neglected. The accuracy of the present results show that 

contribution of the oscillatory part to the strain-energy release 

rate is negligible. 

CONCLUDING REMARKS 

A general procedure is presented for obtaining the strain- 

energy release rate G for cracks using the virtual crack- 

closure technique in finite element analyses. The procedure was 

applied to non-singular 4-noded, 8-noded (parabolic), and 1 2 -  
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noded (cubic) elements and then to quarter-point and cubic 

singularity elements. The procedure assumes that the finite 

element idealization is symmetric about the crack plane at the 

crack tip and symmetric about a line normal to the crack plane at 

the crack tip. The procedure uses forces at and ahead of the 

crack tip and displacements behind the crack tip. With this 

procedure, simple formulas were obtained for the non-singular 

elements. 

For the singularity elements, two types of formulas - 

consistent and simpler - were obtained. The consistent formulas 

use three nodal forces for the quarter-point singularity element, 

and four nodal forces for the cubic singularity elements. In 

contrast, the simpler formulas use two and three nodal forces for 

the quarter-point and cubic singularity elements, respectively. 

A slight modification was necessary to use the formulas when 

the crack faces were subjected to pressure loading. The finite 

element forces need to be modified t o  account for t h e  pressure 

loading. The  modification is simple, accurate and is easy to 

implement in the actual analysis. 

Two mode I and two mixed mode problems were analyzed using 

the non-singular and singular elements mentioned above. The 

strain-energy release rates for these problems were obtained 

using the formulas derived in this paper. Comparisons with 

accurate or reference solutions from the literature showed that, 

for the configurations analyzed, the G formulas yielded accurate 

results. For all the configuration analyzed, the simpler 
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formulas for the singularity elements yielded strain-energy 

r e l e a s e  r a t e s  vhich .*.ere m ~ r e  acetiirate than t h e i r  consiscent 

counterparts. 

With the singularity elements, fewer elements (and, hence, 

fewer degrees of freedom) are needed to obtain accurate 

solutions. The simpler strain-energy release rate formulas 

developed in this paper for singularity elements considerably 

simplified the G formulas without sacrificing accuracy. These 

formulas will enhance the utility of these elements in the 

analysis of cracked isotropic and bimaterial configurations. 

The analysis and procedure presented in this paper should  

provide the b a s i s  for future development of formulas for strain- 

energy release rates for cracked orthotropic and anisotropic 

materials. 

35 



Acknowledgements 

The procedure presented in this paper came out of 

discussions with Dr. J .  H. Crews, Jr. of the Materials Division, 

NASA Langley Research Center, Hampton, VA. The author takes this 

opportunity t o  thank him for many helpful discussions. This work 

was performed a t  the Langley Research Center as part of NASA 

Contracts NAS1-17808 and NAS1-18256. 

36 



i\ p p e n d i x 
Inequality of Forces a t  Nodc k 

This appendix will show that the forces at node k (see 

Fig. 5(b)) computed from the elements J and J' will not be 

the same for mixed mode conditions. 

A mixed mode condition can be thought of as the 

superposition of mode I and mode I1 conditions. Fig. 13 shows 

the forces at node k computed from elements J and J' for 

mode I, mode 11, and mixed mode conditions. For the mode I (mode 

11) case, symmetry (antisymrnetry) conditions about the y - 0 line 

require that the x -  and y-forces be symmetric (antisymmetric). 

I for mode I and Fxl for mode I1 will 
Fx Y 

Note that the forces 

not, in general, be equal to zero. (The requirement of a zero x -  

force at node k for mode I and a zero y-force at node k for 

mode I1 can still be satisfied because elements to the right of 

elements J and J' contribute to these forces.) 

Superposition of the forces at node k from the mode I and 

mode I1 conditions will yield the forces for the mixed mode case 

as shown in Fig. 13. The y-force at node k from element J is 

F1 + F1' while that from element J' is - F1 + F". Similarly, 
Y Y Y Y 

the x-force at node k from element J is F1 -+ F1* and that 
X X 

from element 3 '  is F I- F :! Thus, the forces at node k 
X 
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computed from the t o p  and bottom elements will not be equal. 

Similar arguments hold for node 1 in Fig. 5 ( c ) .  
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Table 1 - Comparison of strain-energy release rates for a 
center cracked tension specimen subjected to remote uniform 

stress S 
(a/b- 0.8 ; A/a - 0.0625 ; plane strain ) 

2 s2r a(1-3 ) 
E [20] - 3.298 GReference 

Percent 
Used F y / S a  Opening S2 ra(l-d2) Error 

EG Element Nodal  Forces Relative Crack 

Displacement 
Ev/Sa 

Non-Singular Elements 

8-noded i -0.3218 m 2.179 
Parabolic 
Element j -0.2969 1 1.487 
(Fig. 3(a)) 

12-noded i -0.2552 p 2.240 
Cubic Element j -0.2360 n 1.835 
(Fig. 3(c)) k -0.1203 m 1.269 

Singularity Elements 

QP Singularity i -0.1068 m 2.276 
Element j -0.4348 1 1.156 
(Fig. 4(a)) k -0.0941 

Cubic i -0.0806 p 2.292 
Singularity j -0.2406 n 1.544 
Element k -0.2471 m 0.7767 
(Fig 4(c)) 1 -0.0698 

3.197 -3.0 

3.239 -1.8 

3.242 -1.7 
(3.269)" (-0.9) 

3.271 - 0 . 8  
(3.285) (-0.4) 

*Values in parenthesis were obtained with simpler formulas. 
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Table 2 - Comparison of strain-energy release rates for a 

stress S 
(a/b - 0.8; A/a - 0.0625; plane strain) 

sz~,-'- edgs n o t c h e d  specimen subjected to remote uniform 

2 2 
S s a(1-t,) 

G (201 - 143.8 
Reference E 

Used Fy/Sa 

Non-Singular Element 

2 Percent 
Opening S na(1-3 ) Error 

EG 
- 2 - -  - - - - Element Nodal Forces Relative Crack 

Displacsrnent 
Ev/Sa 

8-noded i 
Parabolic 

(Fig. 3) 
Element j 

12-noded i 

Element k 
(Fig. 3) 

Cubic j 

- 1.985 

- 1.414 

- 1.602 
- 1.346 
-0.4236 

Sineularitv Elements 

QP i -0.7192 
Singularity 
Element j -2.432 
(Fig. 4 )  

k -0.2309 

Cubic i -0.5052 
Singularity j -1.574 
Element k -1.163 
(Fig. 4) 1 -0.2596 

m 15.95 

1 10.19 

p 16.74 
n 13.10 
m 8 . 6 4 5  

m 17.08 

1 7.804 

128.9 

134.6 

134.8 
(137.4)" 

-10.0 

-6.4 

-6.5 
(-4.5) 

p 17.37 138.6 -3.7 
n 10.85 (139.0) (-3.3) 
m 5.191 

Values in parenthesis were obtained with simpler formulas * 
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Table 3 - Nodal forces for a center cracked tension specimen 
with uniform crack face  loading of magnitude S 

(a/b - 0 . 8 ;  A/a = 0 . 0 6 2 5 ;  plane strain) 

Fy/Sa 

Forces needed Forces to Forces computed in the  
finite element analysis to erase the be used in 

crack face the formu- 
loading la* 

i -0.1068 
QP 
Element j -0.3931 
(Fig. 4) 

k -0.0733 

Cubic i -0.0785 
Singularity 

(Fig. 4) 
Element j -0.2312 

k -0.2096 

0 

-0.0417 

-0.0208 

-0.0021 

-0.0094 

-0.0375 

-0.1068 

-0.4348 

-0.0941 

-0.0806 

-0.2406 

-0.2471 

1 -0.0562 -0.0135 -0.0698 

"Forces in this column are identical to those computed with a 
remote uniform stress of magnitude S applied on the line 
y - h (see Fig. 8). 
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Element 
Used 

Table 4 - Comparison of strain-energy release rates 
for a n  angle crack in a finite plate 
<a,% = 9.5; 4 - 45"; piane strainj 

QP 
Singularity 
Element 

Cubic 
Singularity 
Element 

Reference Results 

Wilson [21]+ 
(Collocation) 

Tan et al. (221 
(Boundary Force 
Method) 

1.436 
(1.447)" 

1.433 
(1.444) 

1.440 

1.416 

E G I I  
2 2 S ra(1-9 ) 

0.3378 
(0.3399) 

0.3446 
(0.3354) 

0.325 

0.3295 

Values in parenthesis were obtained with simpler formulas. * 

+These values were taken from Figs. 6 0  and 61 of ref. 21 
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T a b l e  5 - C o m p a r i s o n  o f  s t r a i n - e n e r g y  r e l e a s e  r a t e s  f o r  c e n t e r  
c r a c k  a l o n g  t h e  i n t e r f a c e  i n  b i m a t e r i a l  p l a t e  w i t h  

c r a c k  f a c e  p r e s s u r e  l o a d i n g  S 
(a/b - 0 . 1 ;  p l a n e  s t r a i n )  

M a t e r i a l  Mode I Mode I1 T o t a l  T o t a l  P e r c e n t  

1 2 
Ref [ 2 3 ] &  E r r o r  

Aluminum Epoxy 1 0 . 3 5  0 . 7 2 6 2  1 1 . 0 8  1.42 
1 0 . 9 2  

( 1 0 . 4 3 )  ( 0 . 6 2 9 6 )  (11.05)+ 1 . 2 1  

S t e e l  E P O X Y  2 9 . 5 6  2 . 8 0 8  3 2 . 0 5  1 . 2 3  

0 . 8 8  
3 1 . 6 6  

( 2 9 . 7 7 )  ( 2 . 1 6 8 )  ( 3 1 . 9 4 )  

S t e e l  Aluminum 1 . 9 3 4  - 0 . 0 5 6 7  1 . 8 7 7  - 5 . 1 9  
1 . 9 8 0  

( 1 . 9 4 7 )  ( - 0 . 0 5 6 7 )  ( 1 . 8 9 0 )  - 4 . 5 6  

M A T E R I A L  P R O P E R T I E S  

M a t e r i a l  E ,  p s i  9 
E P O X Y  0.45 * l o 6  0 . 3 5  

Aluminum 1 0  * 1 0 6  0 . 3  

S t e e l  30  * l o 6  0 . 3  

+The t o t a l  G v a l u e s  o f  r e f e r e n c e  [ 2 3 ]  w e r e  s c a l e d  down by  
f a c t o r  2 b e c a u s e  E r d o g a n  a n d  Gup ta  d e f i n e d  G f o r  an i s o t r o p i c ,  
homogeneous  p l a t e  a s  

G -  2 - K 2  I ( 1 -.d2 1 E 

& V a l u e s  i n  p a r e n t h e s i s  were o b t a i n e d  w i t h  s i m p l e r  f o r m u l a s .  
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-I - a + A  

( a )  Normal s tress  ( o y )  dfstribution ahead o f  the crack 

Y 

t - A + A +  

( b )  Four 4-noded elements a t  t h e  crack t i p  

Fig. 1: Irwin's virtual crack-closure method 
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(a) Finite element idealization 
near the crack tip 

t y  
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Y 
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F 
Fyt y j  

(c) Collapsed 4-noded 
elements a t  crack t i p  

(b) Stress dfstributlon and nodal 
forces 

Fig. 2 :  Normal Stress Distribution and Consistent Normal F o r c e s  
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( b )  QP element idealization (c) C u b i c  singularity 
element idealization 

Fig. 5 - Forces at and a h e a d  o f  t h e  c r a c k  t i p  
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( a )  Crack f a c e  pressure loading 

Y Y 

F A - + -  - - A .  
w 

rn 0 1 w i 0 _j - WX 
S A  1 - )A - *I 2 6  -S 3 6 

( b )  Superposit ion o f  computed f o r c e s  a n d  f o r c e s  needed 
t o  erase the pressure loading 

Fig. 6 - Modification of forces for uniform crack face pressure 
loading 
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( b )  Superposit ion o f  computed f o r c e s  a n d  f o r c e s  needed 
t o  erase the pressure loading 

Fig. 6 - Modification of forces for uniform crack face pressure 
loading 
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Non-singular elements 

a 1 .. 
S A  

Singularity elements 

t 
X SA 

4-noded quadri lateral  element 

8-noded parabolic element 
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- 
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12-noded cubic element 

Q P  singul ari  t y  element 
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60 
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Cubic s ingular element 

Fig. 7 - Consistent nodal forces for uniform pressure loading in 
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( a )  C C T  specimen 
( h / b  = 2 . 0 ;  a / b  = 0 . 8  ) n 

( c )  Finite  element model 
( 3 4  elements) 

( b )  SEN specimen 
( h / b  = 1 .0 ;  a / b  = 0 . 8  ) 

( d )  Detail near the crack t i p  
( A / a  = 1 /16  

Fig. 8 - Mode I problems and the finite element idealization 
EA 
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1 
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( a )  Angle crack i n  a f i n i t e  plate 
( a / b  = 0.5) 

h I El,V1 

( b )  Bimatcrlal plate w i t h  a 
central crack 
( h / b  = 1 . 5 ;  a /b  = 0.1; 

uniform crack face 
pressure loading, s )  

F i g .  9 - Mixed mode problems 
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( a )  Model with 8-noded 
parabolic  elements 
( 7 7  e lements)  

. 

( b )  Model with 12-noded 
cubic e lements  
( 6 6  e l ements )  

( c )  Deta i l s  o f  modeling near the crack t i p  

F i g .  10: F i n i t e  Element Models for t h e  Angle Crack Problem 
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I- t h  e l e m e n t  

i- n o d e  t h  

Fig. 11: Computation of Normal and Tangential Forces 
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( a )  F i n i t e  e l e m e n t  m o d e l  
( 1 4 0  e l e m e n t s )  

( b )  D e t a i l  o f  m o d e l i n g  n e a r  
t h e  c r a c k  t i p  

A l a  = 0.05 

Fig. 1 2 :  Finite Element Idealization for the Bimaterial Plate 
Problem 
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